
PUP TOKEN (PUP) SMART
CONTRACT CODE REVIEW AND
SECURITY ANALYSIS REPORT

Customer​:​ Pup Token Team (PUP)
Prepared on​: 15/05/2021
Platform: Binance Smart Chain
Language: Solidity
Audit Type: Standard

audit@etherauthority.io

Table of contents

Project File 4

Introduction 4

Quick Stats 5

Executive Summary 6

Code Quality 6

Documentation 7

Use of Dependencies 7

AS-IS overview 8

Severity Definitions 11

Audit Findings 12

Conclusion 19

Our Methodology 20

Disclaimers 22

Appendix

● Code Flow Diagram 23

● Slither Report Log 24

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO PUBLIC AFTER ISSUES ARE RESOLVED.

Project file

Name Code Review and Security Analysis
Report for Pup Token (PUP) Smart
Contract

Platform BSC / Solidity

File PupToken.sol

File MD5 hash 57EF3C577EDA596678D8C6C290ED5212

File SHA265 hash
AC7F77AF87B8121098FF41A94B8021B84522
DBAB4A90D4D9475D17A6BD93A940

Introduction
We were contracted by the Pup Token team to perform the Security audit of
the Pup Token smart contract code. The audit has been performed using
manual analysis as well as using automated software tools. This report
presents all the findings regarding the audit performed on 15/05/2021.

The Audit type was Standard Audit. Which means this audit is concluded
based on Standard audit scope, which is one security engineer performing an
audit procedure for 2 days. This document outlines all the findings as well as
an AS-IS overview of the smart contract codes.

Quick Stats:

Main
Category

Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Moderated

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks
management

Passed

Critical operation lacks event log Moderated
Human/contract checks bypass Passed
Random number generation/use

vulnerability
Passed

Fallback function misuse Passed
Race condition Passed

Logical vulnerability Passed
Other programming issues Moderated

Code
Specification

Function visibility not explicitly declared Passed
Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Other code specification issues Passed
Gas

Optimization
Assert() misuse Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

“Out of Gas” Attack Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Executive Summary
According to the standard audit assessment, Customer`s solidity smart
contract is Well secured.

You are here

We used various tools like Mythril, Slither and Remix IDE. At the same time
this finding is based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and
applicable vulnerabilities are presented in the Audit overview section. General
overview is presented in AS-IS section and all identified issues can be found
in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 5 low and some very low level
issues.

Code Quality
Pup Token smart contract has 1 smart contract. This smart contract also

contains Libraries, Smart contract inherits and Interfaces. These are

compact and well written contracts.

The libraries in the Pup Token protocol are part of its logical algorithm. A

library is a different type of smart contract that contains reusable code. Once

deployed on the blockchain (only once), it is assigned a specific address and

its properties / methods can be reused many times by other contracts in the

Pup Token protocol.

The Pup Token team has not provided scenario and unit test scripts, which

would have helped to determine the integrity of the code in an automated

way.

Overall, code parts are not well commented on smart contracts.

Documentation

We were given Pup token smart contracts code in the form of a file. The

hashes of that code are mentioned above in the table.

As said over, most code parts are not well commented. so it is troublesome

to rapidly get the programming flow as well as complex code logic.

Comments are exceptionally supportive in understanding the general design

of the convention.

Another source of data was its official site, which provided a wealth of

information about code design and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contract

infrastructure that are based on well known industry standard open source

projects. And their core code blocks are written well.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

Pup Token (PUP) is a community-focused, decentralized digital asset with
instant rewards for holders as well as auto-burn liquidity.

PupToken.sol

(1) Interfaces
(a) IERC20

(b) IUniswapV2Factory

(c) IUniswapV2Pair

(d) IUniswapV2Router01

(e) IUniswapV2Router02

(2) Inherited contracts
(a) Context: Context contract.

(b) Ownable: Ownership contract.

(c) IERC20: IERC20 contract.

(3) Usages
(a) using SafeMath for uint256;

(b) using Address for address;

(4) Events
(a) event Transfer(address indexed from, address indexed to, uint256

value);

(b) event Approval(address indexed owner, address indexed spender,

uint256 value);

(c) event OwnershipTransferred(address indexed previousOwner, address

indexed newOwner);

(d) event PairCreated(address indexed token0, address indexed token1,

address pair, uint);

(e) event Approval(address indexed owner, address indexed spender, uint

value);

(f) event Transfer(address indexed from, address indexed to, uint value);

(g) event Mint(address indexed sender, uint amount0, uint amount1);

(h) event Burn(address indexed sender, uint amount0, uint amount1,

address indexed to);

(i) event Swap(address indexed sender, uint amount0In,uint amount1In,

uint amount0Out, uint amount1Out, address indexed to);

(j) event Sync(uint112 reserve0, uint112 reserve1);

(k) event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);

(l) event SwapAndLiquifyEnabledUpdated(bool enabled);

(m) event SwapAndLiquify(uint256 tokensSwapped,uint256

ethReceived,uint256 tokensIntoLiqudity);

(5) Functions

Sl. Functions Type Observation Conclusion
1 name read Passed No Issue
2 symbol read Passed No Issue
3 decimals read Passed No Issue
4 totalSupply read Passed No Issue
5 balanceOf read Passed No Issue
6 transfer write Passed No Issue
7 allowance read Passed No Issue
8 approve write Passed No Issue
9 transferFrom write Passed No Issue

10 increaseAllowance write Passed No Issue
11 decreaseAllowance write Passed No Issue
12 isExcludedFromReward read Passed No Issue
13 totalFees write Passed No Issue
14 deliver write Passed No Issue
15 reflectionFromToken read Passed No Issue
16 tokenFromReflection read Passed No Issue

17 excludeFromReward write access by
only owner

No Issue

18 includeInReward external Infinite loop
possibility

Refer Audit
Findings

19 _transferBothExcluded write Infinite loop
possibility

No Issue

20 excludeFromFee write access by
only owner

No Issue

21 includeInFee write Missing
events
emitting

No Issue

22 setTaxFeePercent external Missing
events
emitting

No Issue

23 setLiquidityFeePercent external Missing
events
emitting

No Issue

24 setMaxTxPercent external Missing
events
emitting

No Issue

25 setSwapAndLiquifyEnabled write Missing
events
emitting

No Issue

26 _reflectFee write Passed No Issue
27 _getValues read Passed No Issue
28 _getTValues read Passed No Issue
29 _getRValues write Passed No Issue
30 _getRate read Passed No Issue
31 _getCurrentSupply read Passed No Issue
32 _takeLiquidity write Passed No Issue
33 calculateTaxFee read Passed No Issue
34 calculateLiquidityFee read Passed No Issue
35 removeAllFee write Passed No Issue
36 restoreAllFee write Passed No Issue
37 isExcludedFromFee read Passed No Issue
38 _approve write Passed No Issue
39 _transfer write Passed No Issue
40 swapAndLiquify write Passed No Issue
41 swapTokensForEth write Passed No Issue
42 _tokenTransfer write Passed No Issue
43 addLiquidity write Ownership

control
Refer Audit

Findings

44 _transferStandard write Passed No Issue
45 _transferFromExcluded write Passed No Issue
46 _msgSender read Passed No Issue
47 _msgData read Passed No Issue
48 owner read Passed No Issue
49 renounceOwnership write Passed No Issue
50 transferOwnership write Passed No Issue
51 geUnlockTime read Passed No Issue
52 lock write Passed No Issue
53 unlock write Passed No Issue
54 _transferToExcluded write Passed No Issue

Severity Definitions
Risk Level Description

Critical Critical vulnerabilities are usually straightforward to
exploit and can lead to tokens loss etc.
High-level vulnerabilities are difficult to exploit;

High however, they also have significant impact on smart
contract execution, e.g. public access to crucial
functions

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose
Low-level vulnerabilities are mostly related to

Low outdated, unused etc. code snippets, that can’t have
significant impact on execution

Lowest / Code Lowest-level vulnerabilities, code style violations
Style / Best and info statements can’t affect smart contract

Practice execution and can be ignored.

Audit Findings

Critical

No critical severity vulnerabilities were found.

High

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) We observed the possibility to gain ownership again after renouncing the

contract ownership. Owner can renounce ownership and make smart contract

without owners, but here is a catch. owner can regain ownership by

performing the following operations:

● Owner calls the lock function in contract to set the current owner as

_previousOwner.

● Owner calls unlock to unlock contract and set _owner =

_previousOwner.

● Owner called to reject Ownership to leave the contract without the

owner.

● Owner calls unlock to reclaim the ownership again.

Solution: We advise updating/removing lock and unlock functions in the

contract or call renounceOwnership function first before calling lock/unlock

functions.

(2) Centralized risk in addLiquidity

AddLiquidityETH function has to be addressed as owner() to get LP Tokens

from Pool. At some time, The owner will accumulate significant LP tokens. If

the _owner is an EOA (Externally Owned Account), mishandling of its private

key can have devastating consequences to the project.

Solution: owner() should be replaced by address(this). Also the management

of the LP tokens can be restricted in such a way that, this will protect the LP

tokens from being stolen even if the _owner account is compromised.

(3) Missing Events: Functions which change the state should emit events.

● deliver

● excludeFromFee

● excludeFromReward

● includeInFee

● includeInReward

● setLiquidityFeePercent

● setMaxTxPercent

● setTaxFeePercent

(4) Infinite loop possibility

If there are so many excluded wallets, then this logic will fail, as it might hit

the block’s gas limit. If there are very limited exceptions, then this will work,

but will cost more gas.

Solution: Just use a mapping that will map wallet to bool and make excluded

wallets to be true. This logic will not have any gas or scalability issues.

(5) Variable could be declared as constant

States variables that never change need to be declared as constants.

Variables Like: _name, _symbol, _decimals, _tTotal, etc.

Very Low / Discussion / Best practices:

(1) Solidity version

Utilize the most recent solidity version, whereas contract sending to anticipate

any compiler form level bugs.

Solution: This issue is recognized.

(2) Redundant code

The condition !_isExcluded[sender] && !_isExcluded[recipient] is not needed,

it can be included in the else condition so no need for this extra condition

here.

Solution: Line no : 1101,1102 need to removed

} else if (!_isExcluded[sender] && !_isExcluded[recipient]) {

_transferStandard(sender, recipient, amount);

(3) function and variable names do not match with bsc network.

This contract is for BSC. The comments and some functions have ETH text in

it. But, it should be BNB. Some functions have used Uniswap but it should be

Pancakeswap. This naming should be changed.

Solution:

● Change the ETH to BNB in comments.

● Change Uniswap to PancakeSwap to remove any confusion.

● Change IuniswapV2Router01 to IpancakeRouter01.

● Change IuniswapV2Router02 to IpancakeRouter02.

● Change uniswapV2Router to PancakeRouter.

● Change uniswapV2Pair to pancakePair.

● Change all uniswap to pancake and ETH to BNB.

(4) Typing mistake in contract.

There are many typing mistakes in code and comments. TokensIntoLiqudity

should be tokensIntoLiquidity, recieve should be receive, swapping should be

swapping.

Solution: We recommend correcting all typing mistakes in the contract.

Centralization
This smart contract has some functions which can be executed by Admin

(Ownable) only. If the admin wallet private key would be compromised, then it

puts this smart contract in the hands of an attacker. Following are Admin

functions:

● Owner can use the delivery function and send tokens to any wallet.

● Owner has permission to change the owner address and receive LP

Tokens.

● Owner can lock the contract.

● Owner can enable/disable swapAndLiquifyEnabled.

● Owner can set Tax Fee Percent, Max Tx Percent, Liquidity fee percent

,etc.

● Owner can include/exclude any wallet from reward and fees.

Conclusion

We were given a contract code. And we have used all possible tests based

on given objects as files. We observed some issues in the smart contract and

those are fixed/acknowledged in the smart contract. So it is good to go for

the production.

Since possible test cases can be unlimited for such extensive smart contract

protocol, we provide no such guarantee of future outcomes. We have used all

the latest static tools and manual observations to cover maximum possible

test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with

static analysis tools. Smart Contract’s high level description of functionality

was presented in As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the

reviewed code.

Security state of the reviewed contract, based on standard audit procedure

scope, is “Well Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a

collaborative effort. The goals of our security audits are to improve the quality

of systems we review and aim for sufficient remediation to help protect users.

The following is the methodology we use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with

code logic, error handling, protocol and header parsing, cryptographic errors,

and random number generators. We also watch for areas where more

defensive programming could reduce the risk of future mistakes and speed

up future audits. Although our primary focus is on the in-scope code, we

examine dependency code and behavior when it is relevant to a particular

line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface

interaction, and whitebox penetration testing. We look at the project's web site

to get a high level understanding of what functionality the software under

review provides. We then meet with the developers to gain an appreciation of

their vision of the software. We install and use the relevant software,

exploring the user interactions and roles. While we do this, we brainstorm

threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code

dependencies, skim open issue tickets, and generally investigate details other

than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a

potential issue is discovered, we immediately create an Issue entry for it in

this document, even though we have not yet verified the feasibility and impact

of the issue. This process is conservative because we document our

suspicions early even if they are later shown to not represent exploitable

vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most

tentative, and we strive to provide test code, log captures, or screenshots

demonstrating our confirmation. After this we analyze the feasibility of an

attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and

finally we suggest the requirements for remediation engineering for future

releases. The mitigation and remediation recommendations should be

scrutinized by the developers and deployment engineers, and successful

mitigation and remediation is an ongoing collaborative process after we

deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the
best industry practices at the date of this report, in relation to: cybersecurity
vulnerabilities and issues in smart contract source code, the details of which
are disclosed in this report, (Source Code); the Source Code compilation,
deployment and functionality (performing the intended functions).

Due to the fact that the total number of test cases are unlimited, the audit
makes no statements or warranties on security of the code. It also cannot be
considered as a sufficient assessment regarding the utility and safety of the
code, bugfree status or any other statements of the contract. While we have
done our best in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only. We also suggest
conducting a bug bounty program to confirm the high level of security of this
smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have their own vulnerabilities that can lead to hacks. Thus, the
audit can’t guarantee explicit security of the audited smart contracts.

Appendix
Code Flow Diagram - Pup Token

Slither Results Log

SLITHER REPORT >> PupToken.sol

xcv@xcv-ThinkPad-T410:~/tempSlither$
xcv@xcv-ThinkPad-T410:~/tempSlither$ slither PupToken.sol
INFO:Detectors:
Reentrancy in PupToken._transfer(address,address,uint256)

(PupToken.sol#990-1034): External calls:
- swapAndLiquify(contractTokenBalance) (PupToken.sol#1021)

- uniswapV2Router.addLiquidityETH{value: ethAmount}
(address(this),tokenAmount,0,0,owner(),block.timestamp)

(PupToken.sol#1082-1089) -
uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmou
nt,0,path, address(this),block.timestamp) (PupToken.sol#1068-1074)

External calls sending eth:
- swapAndLiquify(contractTokenBalance) (PupToken.sol#1021)

- uniswapV2Router.addLiquidityETH{value: ethAmount}
(address(this),tokenAmount,0,0,owner(),block.timestamp)

(PupToken.sol#1082-1089) State variables written after the call(s):
- _tokenTransfer(from,to,amount,takeFee) (PupToken.sol#1033)

- _rOwned[address(this)] = _rOwned[address(this)].add(rLiquidity)
(PupToken.sol#946)

- _rOwned[sender] = _rOwned[sender].sub(rAmount)
(PupToken.sol#1124) - _rOwned[sender] =
_rOwned[sender].sub(rAmount) (PupToken.sol#1115) -
_rOwned[sender] = _rOwned[sender].sub(rAmount)
(PupToken.sol#1135) - _rOwned[sender] =
_rOwned[sender].sub(rAmount) (PupToken.sol#862)
- _rOwned[recipient] = _rOwned[recipient].add(rTransferAmount)

(PupToken.sol#1116)
- _rOwned[recipient] = _rOwned[recipient].add(rTransferAmount)

(PupToken.sol#1136)
- _rOwned[recipient] = _rOwned[recipient].add(rTransferAmount)

(PupToken.sol#1126)
- _rOwned[recipient] = _rOwned[recipient].add(rTransferAmount)

(PupToken.sol#864)
- _tokenTransfer(from,to,amount,takeFee) (PupToken.sol#1033)

- _rTotal = _rTotal.sub(rFee) (PupToken.sol#901)
- _tokenTransfer(from,to,amount,takeFee) (PupToken.sol#1033)

- _tOwned[address(this)] = _tOwned[address(this)].add(tLiquidity)
(PupToken.sol#948)

- _tOwned[sender] = _tOwned[sender].sub(tAmount) (PupToken.sol#861)
- _tOwned[sender] = _tOwned[sender].sub(tAmount)
(PupToken.sol#1134) - _tOwned[recipient] =
_tOwned[recipient].add(tTransferAmount)

(PupToken.sol#1125)
- _tOwned[recipient] = _tOwned[recipient].add(tTransferAmount)

(PupToken.sol#863)
Reference:

https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy
vulnerabilities
INFO:Detectors:
PupToken.addLiquidity(uint256,uint256) (PupToken.sol#1077-1090) ignores return
value by uniswapV2Router.addLiquidityETH{value: ethAmount}
(address(this),tokenAmount,0,0,owner(),block.timestamp)
(PupToken.sol#1082-1089) Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#unused-return
INFO:Detectors:
PupToken.allowance(address,address).owner (PupToken.sol#778)
shadows: - Ownable.owner() (PupToken.sol#414-416) (function)

PupToken._approve(address,address,uint256).owner (PupToken.sol#982)
shadows: - Ownable.owner() (PupToken.sol#414-416) (function)

Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing
INFO:Detectors:
Reentrancy in PupToken._transfer(address,address,uint256)

(PupToken.sol#990-1034): External calls:
- swapAndLiquify(contractTokenBalance) (PupToken.sol#1021)

- uniswapV2Router.addLiquidityETH{value: ethAmount}
(address(this),tokenAmount,0,0,owner(),block.timestamp)

(PupToken.sol#1082-1089) -
uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmou
nt,0,path, address(this),block.timestamp) (PupToken.sol#1068-1074)

External calls sending eth:
- swapAndLiquify(contractTokenBalance) (PupToken.sol#1021)

- uniswapV2Router.addLiquidityETH{value: ethAmount}
(address(this),tokenAmount,0,0,owner(),block.timestamp)

(PupToken.sol#1082-1089) State variables written after the call(s):
- _tokenTransfer(from,to,amount,takeFee) (PupToken.sol#1033)

- _liquidityFee = _previousLiquidityFee (PupToken.sol#975)
- _liquidityFee = 0 (PupToken.sol#970)

- _tokenTransfer(from,to,amount,takeFee) (PupToken.sol#1033)
- _previousLiquidityFee = _liquidityFee (PupToken.sol#967)

- _tokenTransfer(from,to,amount,takeFee) (PupToken.sol#1033)
- _previousTaxFee = _taxFee (PupToken.sol#966)

- _tokenTransfer(from,to,amount,takeFee) (PupToken.sol#1033)
- _tFeeTotal = _tFeeTotal.add(tFee) (PupToken.sol#902)

- _tokenTransfer(from,to,amount,takeFee) (PupToken.sol#1033)
- _taxFee = _previousTaxFee (PupToken.sol#974)
- _taxFee = 0 (PupToken.sol#969)

Reentrancy in PupToken.constructor() (PupToken.sol#734-750):
External calls:
- uniswapV2Pair =

IUniswapV2Factory(_uniswapV2Router.factory()).createPair(address(this),_uniswapV2Ro
uter.WE TH()) (PupToken.sol#739-740)

State variables written after the call(s):
- _isExcludedFromFee[owner()] = true (PupToken.sol#746)
- _isExcludedFromFee[address(this)] = true (PupToken.sol#747)
- uniswapV2Router = _uniswapV2Router (PupToken.sol#743)

Reentrancy in PupToken.swapAndLiquify(uint256)
(PupToken.sol#1036-1057): External calls:
- swapTokensForEth(half) (PupToken.sol#1048)

-

uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmou
nt,0,path, address(this),block.timestamp) (PupToken.sol#1068-1074)

- addLiquidity(otherHalf,newBalance) (PupToken.sol#1054)
- uniswapV2Router.addLiquidityETH{value: ethAmount}

(address(this),tokenAmount,0,0,owner(),block.timestamp)
(PupToken.sol#1082-1089) External calls sending eth:
- addLiquidity(otherHalf,newBalance) (PupToken.sol#1054)

- uniswapV2Router.addLiquidityETH{value: ethAmount}
(address(this),tokenAmount,0,0,owner(),block.timestamp)

(PupToken.sol#1082-1089) State variables written after the call(s):
- addLiquidity(otherHalf,newBalance) (PupToken.sol#1054)

- _allowances[owner][spender] = amount (PupToken.sol#986)
Reentrancy in PupToken.transferFrom(address,address,uint256)

(PupToken.sol#787-791): External calls:
- _transfer(sender,recipient,amount) (PupToken.sol#788)

- uniswapV2Router.addLiquidityETH{value: ethAmount}
(address(this),tokenAmount,0,0,owner(),block.timestamp)

(PupToken.sol#1082-1089) -
uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmou
nt,0,path, address(this),block.timestamp) (PupToken.sol#1068-1074)

External calls sending eth:
- _transfer(sender,recipient,amount) (PupToken.sol#788)

- uniswapV2Router.addLiquidityETH{value: ethAmount}
(address(this),tokenAmount,0,0,owner(),block.timestamp)

(PupToken.sol#1082-1089) State variables written after the call(s):
-

_approve(sender,_msgSender(),_allowances[sender][_msgSender()].sub(amount,ERC20
: transfer amount exceeds allowance)) (PupToken.sol#789)

- _allowances[owner][spender] = amount (PupToken.sol#986)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy
vulnerabilities-2
INFO:Detectors:
Reentrancy in PupToken._transfer(address,address,uint256)

(PupToken.sol#990-1034): External calls:
- swapAndLiquify(contractTokenBalance) (PupToken.sol#1021)

- uniswapV2Router.addLiquidityETH{value: ethAmount}
(address(this),tokenAmount,0,0,owner(),block.timestamp)

(PupToken.sol#1082-1089) -
uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmou
nt,0,path, address(this),block.timestamp) (PupToken.sol#1068-1074)

External calls sending eth:
- swapAndLiquify(contractTokenBalance) (PupToken.sol#1021)

- uniswapV2Router.addLiquidityETH{value: ethAmount}
(address(this),tokenAmount,0,0,owner(),block.timestamp)

(PupToken.sol#1082-1089) Event emitted after the call(s):
- Transfer(sender,recipient,tTransferAmount) (PupToken.sol#1119)

- _tokenTransfer(from,to,amount,takeFee) (PupToken.sol#1033)
- Transfer(sender,recipient,tTransferAmount) (PupToken.sol#1139)

- _tokenTransfer(from,to,amount,takeFee) (PupToken.sol#1033)
- Transfer(sender,recipient,tTransferAmount) (PupToken.sol#1129)

- _tokenTransfer(from,to,amount,takeFee) (PupToken.sol#1033)
- Transfer(sender,recipient,tTransferAmount) (PupToken.sol#867)

- _tokenTransfer(from,to,amount,takeFee) (PupToken.sol#1033)
Reentrancy in PupToken.constructor() (PupToken.sol#734-750):

External calls:
- uniswapV2Pair =

IUniswapV2Factory(_uniswapV2Router.factory()).createPair(address(this),_uniswapV2Ro
uter.WE TH()) (PupToken.sol#739-740)

Event emitted after the call(s):
- Transfer(address(0),_msgSender(),_tTotal) (PupToken.sol#749)

Reentrancy in PupToken.swapAndLiquify(uint256)
(PupToken.sol#1036-1057): External calls:
- swapTokensForEth(half) (PupToken.sol#1048)

-
uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmou
nt,0,path, address(this),block.timestamp) (PupToken.sol#1068-1074)

- addLiquidity(otherHalf,newBalance) (PupToken.sol#1054)
- uniswapV2Router.addLiquidityETH{value: ethAmount}

(address(this),tokenAmount,0,0,owner(),block.timestamp)
(PupToken.sol#1082-1089) External calls sending eth:
- addLiquidity(otherHalf,newBalance) (PupToken.sol#1054)

- uniswapV2Router.addLiquidityETH{value: ethAmount}
(address(this),tokenAmount,0,0,owner(),block.timestamp)

(PupToken.sol#1082-1089) Event emitted after the call(s):
- Approval(owner,spender,amount) (PupToken.sol#987)

- addLiquidity(otherHalf,newBalance) (PupToken.sol#1054)
- SwapAndLiquify(half,newBalance,otherHalf) (PupToken.sol#1056)

Reentrancy in PupToken.transferFrom(address,address,uint256)
(PupToken.sol#787-791): External calls:
- _transfer(sender,recipient,amount) (PupToken.sol#788)

- uniswapV2Router.addLiquidityETH{value: ethAmount}
(address(this),tokenAmount,0,0,owner(),block.timestamp)

(PupToken.sol#1082-1089) -
uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmou
nt,0,path, address(this),block.timestamp) (PupToken.sol#1068-1074)

External calls sending eth:
- _transfer(sender,recipient,amount) (PupToken.sol#788)

- uniswapV2Router.addLiquidityETH{value: ethAmount}
(address(this),tokenAmount,0,0,owner(),block.timestamp)

(PupToken.sol#1082-1089) Event emitted after the call(s):
- Approval(owner,spender,amount) (PupToken.sol#987)

- _approve(sender,_msgSender(),_allowances[sender]
[_msgSender()].sub(amount,ERC20: transfer amount exceeds allowance))
(PupToken.sol#789) Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy
vulnerabilities-3
INFO:Detectors:
Ownable.unlock() (PupToken.sol#461-466) uses timestamp for

comparisons Dangerous comparisons:
- require(bool,string)(now > _lockTime,Contract is locked until 7 days)

(PupToken.sol#463) Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
INFO:Detectors:
Address.isContract(address) (PupToken.sol#266-275) uses assembly

- INLINE ASM (PupToken.sol#273)

Address._functionCallWithValue(address,bytes,uint256,string)
(PupToken.sol#359-380) uses assembly

- INLINE ASM (PupToken.sol#372-375)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage
INFO:Detectors:
PupToken._rTotal (PupToken.sol#698) is set pre-construction with a non-constant function
or state variable:

- (MAX - (MAX % _tTotal))
PupToken._previousTaxFee (PupToken.sol#706) is set pre-construction with a
non-constant function or state variable:

- _taxFee
PupToken._previousLiquidityFee (PupToken.sol#709) is set pre-construction with a
non-constant function or state variable:

- _liquidityFee
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#function-initializing
state-variables
INFO:Detectors:

Low level call in Address.sendValue(address,uint256)
(PupToken.sol#293-299): - (success) = recipient.call{value: amount}()

(PupToken.sol#297)
Low level call in
Address._functionCallWithValue(address,bytes,uint256,string)
(PupToken.sol#359-380):

- (success,returndata) = target.call{value: weiValue}(data)
(PupToken.sol#363) Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#low-level-calls
INFO:Detectors:
Function IUniswapV2Pair.DOMAIN_SEPARATOR() (PupToken.sol#505) is not in
mixedCase Function IUniswapV2Pair.PERMIT_TYPEHASH() (PupToken.sol#506) is
not in mixedCase Function IUniswapV2Pair.MINIMUM_LIQUIDITY()
(PupToken.sol#523) is not in mixedCase Function IUniswapV2Router01.WETH()
(PupToken.sol#545) is not in mixedCase Parameter
PupToken.setSwapAndLiquifyEnabled(bool)._enabled (PupToken.sol#892) is not in
mixedCase
Parameter PupToken.calculateTaxFee(uint256)._amount (PupToken.sol#951) is not in
mixedCase Parameter PupToken.calculateLiquidityFee(uint256)._amount
(PupToken.sol#957) is not in mixedCase
Variable PupToken._taxFee (PupToken.sol#705) is not in mixedCase
Variable PupToken._liquidityFee (PupToken.sol#708) is not in mixedCase
Variable PupToken._maxTxAmount (PupToken.sol#717) is not in mixedCase Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity
naming-conventions
INFO:Detectors:
Redundant expression "this (PupToken.sol#239)" inContext (PupToken.sol#233-242)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#redundant-statements
INFO:Detectors:
Variable
IUniswapV2Router01.addLiquidity(address,address,uint256,uint256,uint256,uint256,addre
ss,uint25 6).amountADesired (PupToken.sol#550) is too similar to
IUniswapV2Router01.addLiquidity(address,address,uint256,uint256,uint256,uint256,addre

ss,uint25 6).amountBDesired (PupToken.sol#551)
Variable
PupToken._transferFromExcluded(address,address,uint256).rTransferAmount
(PupToken.sol#1133) is too similar to
PupToken._transferToExcluded(address,address,uint256).tTransferAmount
(PupToken.sol#1123) Variable
PupToken._getRValues(uint256,uint256,uint256,uint256).rTransferAmount
(PupToken.sol#922) is too similar to
PupToken._transferStandard(address,address,uint256).tTransferAmount
(PupToken.sol#1114) Variable PupToken._getValues(uint256).rTransferAmount
(PupToken.sol#907) is too similar to
PupToken._transferStandard(address,address,uint256).tTransferAmount
(PupToken.sol#1114) Variable
PupToken._transferBothExcluded(address,address,uint256).rTransferAmount
(PupToken.sol#860) is too similar to PupToken._getTValues(uint256).tTransferAmount
(PupToken.sol#914)
Variable
PupToken._getRValues(uint256,uint256,uint256,uint256).rTransferAmount
(PupToken.sol#922) is too similar to
PupToken._transferFromExcluded(address,address,uint256).tTransferAmount
(PupToken.sol#1133) Variable
PupToken._transferBothExcluded(address,address,uint256).rTransferAmount
(PupToken.sol#860) is too similar to
PupToken._transferBothExcluded(address,address,uint256).tTransferAmount
(PupToken.sol#860) Variable
PupToken._transferToExcluded(address,address,uint256).rTransferAmount
(PupToken.sol#1123) is too similar to PupToken._getTValues(uint256).tTransferAmount
(PupToken.sol#914)
Variable
PupToken._getRValues(uint256,uint256,uint256,uint256).rTransferAmount
(PupToken.sol#922) is too similar to
PupToken._getValues(uint256).tTransferAmount (PupToken.sol#906)
Variable
PupToken._transferStandard(address,address,uint256).rTransferAmount
(PupToken.sol#1114) is too similar to
PupToken._transferStandard(address,address,uint256).tTransferAmount
(PupToken.sol#1114) Variable
PupToken._transferFromExcluded(address,address,uint256).rTransferAmount
(PupToken.sol#1133) is too similar to
PupToken._transferBothExcluded(address,address,uint256).tTransferAmount
(PupToken.sol#860) Variable
PupToken._transferFromExcluded(address,address,uint256).rTransferAmount
(PupToken.sol#1133) is too similar to PupToken._getTValues(uint256).tTransferAmount
(PupToken.sol#914)
Variable
PupToken._transferFromExcluded(address,address,uint256).rTransferAmount
(PupToken.sol#1133) is too similar to
PupToken._getValues(uint256).tTransferAmount (PupToken.sol#906)
Variable
PupToken._transferBothExcluded(address,address,uint256).rTransferAmount
(PupToken.sol#860) is too similar to
PupToken._getValues(uint256).tTransferAmount (PupToken.sol#906)
Variable

PupToken._transferFromExcluded(address,address,uint256).rTransferAmount
(PupToken.sol#1133) is too similar to
PupToken._transferFromExcluded(address,address,uint256).tTransferAmount
(PupToken.sol#1133) Variable
PupToken._transferBothExcluded(address,address,uint256).rTransferAmount
(PupToken.sol#860) is too similar to
PupToken._transferStandard(address,address,uint256).tTransferAmount
(PupToken.sol#1114) Variable
PupToken._transferFromExcluded(address,address,uint256).rTransferAmount
(PupToken.sol#1133) is too similar to
PupToken._transferStandard(address,address,uint256).tTransferAmount
(PupToken.sol#1114) Variable
PupToken._transferStandard(address,address,uint256).rTransferAmount
(PupToken.sol#1114) is too similar to
PupToken._getTValues(uint256).tTransferAmount (PupToken.sol#914)
Variable
PupToken._getRValues(uint256,uint256,uint256,uint256).rTransferAmount
(PupToken.sol#922) is too similar to
PupToken._transferBothExcluded(address,address,uint256).tTransferAmount
(PupToken.sol#860) Variable
PupToken._getRValues(uint256,uint256,uint256,uint256).rTransferAmount
(PupToken.sol#922) is too similar to
PupToken._transferToExcluded(address,address,uint256).tTransferAmount
(PupToken.sol#1123) Variable
PupToken._getRValues(uint256,uint256,uint256,uint256).rTransferAmount
(PupToken.sol#922) is too similar to PupToken._getTValues(uint256).tTransferAmount
(PupToken.sol#914)
Variable PupToken._getValues(uint256).rTransferAmount (PupToken.sol#907) is too
similar to PupToken._transferToExcluded(address,address,uint256).tTransferAmount
(PupToken.sol#1123)
Variable
PupToken._transferBothExcluded(address,address,uint256).rTransferAmount
(PupToken.sol#860) is too similar to
PupToken._transferToExcluded(address,address,uint256).tTransferAmount
(PupToken.sol#1123) Variable
PupToken._transferToExcluded(address,address,uint256).rTransferAmount
(PupToken.sol#1123) is too similar to
PupToken._transferToExcluded(address,address,uint256).tTransferAmount
(PupToken.sol#1123) Variable
PupToken._transferBothExcluded(address,address,uint256).rTransferAmount
(PupToken.sol#860) is too similar to
PupToken._transferFromExcluded(address,address,uint256).tTransferAmount
(PupToken.sol#1133) Variable
PupToken._transferStandard(address,address,uint256).rTransferAmount
(PupToken.sol#1114) is too similar to
PupToken._transferToExcluded(address,address,uint256).tTransferAmount
(PupToken.sol#1123) Variable PupToken._getValues(uint256).rTransferAmount
(PupToken.sol#907) is too similar to PupToken._getTValues(uint256).tTransferAmount
(PupToken.sol#914)
Variable
PupToken._transferToExcluded(address,address,uint256).rTransferAmount
(PupToken.sol#1123) is too similar to
PupToken._getValues(uint256).tTransferAmount (PupToken.sol#906)

Variable PupToken._getValues(uint256).rTransferAmount (PupToken.sol#907) is too
similar to PupToken._getValues(uint256).tTransferAmount (PupToken.sol#906)
Variable PupToken.reflectionFromToken(uint256,bool).rTransferAmount
(PupToken.sol#826) is too similar to
PupToken._transferToExcluded(address,address,uint256).tTransferAmount
(PupToken.sol#1123)
Variable PupToken.reflectionFromToken(uint256,bool).rTransferAmount
(PupToken.sol#826) is too similar to
PupToken._transferBothExcluded(address,address,uint256).tTransferAmount
(PupToken.sol#860)
Variable
PupToken._transferToExcluded(address,address,uint256).rTransferAmount
(PupToken.sol#1123) is too similar to
PupToken._transferStandard(address,address,uint256).tTransferAmount
(PupToken.sol#1114) Variable
PupToken.reflectionFromToken(uint256,bool).rTransferAmount (PupToken.sol#826) is too
similar to PupToken._getTValues(uint256).tTransferAmount (PupToken.sol#914) Variable
PupToken._transferToExcluded(address,address,uint256).rTransferAmount
(PupToken.sol#1123) is too similar to
PupToken._transferFromExcluded(address,address,uint256).tTransferAmount
(PupToken.sol#1133) Variable
PupToken._transferStandard(address,address,uint256).rTransferAmount
(PupToken.sol#1114) is too similar to
PupToken._transferBothExcluded(address,address,uint256).tTransferAmount
(PupToken.sol#860) Variable
PupToken.reflectionFromToken(uint256,bool).rTransferAmount (PupToken.sol#826) is too
similar to PupToken._transferStandard(address,address,uint256).tTransferAmount
(PupToken.sol#1114)
Variable PupToken.reflectionFromToken(uint256,bool).rTransferAmount
(PupToken.sol#826) is too similar to PupToken._getValues(uint256).tTransferAmount
(PupToken.sol#906) Variable
PupToken._transferToExcluded(address,address,uint256).rTransferAmount
(PupToken.sol#1123) is too similar to
PupToken._transferBothExcluded(address,address,uint256).tTransferAmount
(PupToken.sol#860) Variable
PupToken._transferStandard(address,address,uint256).rTransferAmount
(PupToken.sol#1114) is too similar to PupToken._getValues(uint256).tTransferAmount
(PupToken.sol#906)
Variable PupToken._getValues(uint256).rTransferAmount (PupToken.sol#907) is too
similar to PupToken._transferFromExcluded(address,address,uint256).tTransferAmount
(PupToken.sol#1133) Variable
PupToken.reflectionFromToken(uint256,bool).rTransferAmount (PupToken.sol#826) is too
similar to PupToken._transferFromExcluded(address,address,uint256).tTransferAmount
(PupToken.sol#1133)
Variable
PupToken._transferStandard(address,address,uint256).rTransferAmount
(PupToken.sol#1114) is too similar to
PupToken._transferFromExcluded(address,address,uint256).tTransferAmount
(PupToken.sol#1133) Variable PupToken._getValues(uint256).rTransferAmount
(PupToken.sol#907) is too similar to
PupToken._transferBothExcluded(address,address,uint256).tTransferAmount
(PupToken.sol#860) Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#variable-names-are-too
similar

INFO:Detectors:
PupToken.slitherConstructorVariables() (PupToken.sol#683-1142) uses literals with
too many digits:

- _tTotal = 1000000000000 * 10 ** 9 (PupToken.sol#697)
PupToken.slitherConstructorVariables() (PupToken.sol#683-1142) uses literals with
too many digits:

- _maxTxAmount = 1000000000000 * 10 ** 9 (PupToken.sol#717)
PupToken.slitherConstructorVariables() (PupToken.sol#683-1142) uses literals with
too many digits:

- numTokensSellToAddToLiquidity = 100000000 * 10 ** 9
(PupToken.sol#718) Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
INFO:Detectors:
PupToken._decimals (PupToken.sol#703) should be constant
PupToken._name (PupToken.sol#701) should be constant
PupToken._symbol (PupToken.sol#702) should be constant
PupToken._tTotal (PupToken.sol#697) should be constant
PupToken.numTokensSellToAddToLiquidity (PupToken.sol#718) should be constant
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that
could-be-declared-constant
INFO:Detectors:
renounceOwnership() should be declared external:

- Ownable.renounceOwnership() (PupToken.sol#433-436)
transferOwnership(address) should be declared external:

- Ownable.transferOwnership(address) (PupToken.sol#442-446)
geUnlockTime() should be declared external:

- Ownable.geUnlockTime() (PupToken.sol#448-450)
lock(uint256) should be declared external:

- Ownable.lock(uint256) (PupToken.sol#453-458)
unlock() should be declared external:

- Ownable.unlock() (PupToken.sol#461-466)
name() should be declared external:

- PupToken.name() (PupToken.sol#752-754)
symbol() should be declared external:

- PupToken.symbol() (PupToken.sol#756-758)
decimals() should be declared external:

- PupToken.decimals() (PupToken.sol#760-762)
totalSupply() should be declared external:

- PupToken.totalSupply() (PupToken.sol#764-766)
transfer(address,uint256) should be declared external:

- PupToken.transfer(address,uint256) (PupToken.sol#773-776)
allowance(address,address) should be declared external:

- PupToken.allowance(address,address) (PupToken.sol#778-780)
approve(address,uint256) should be declared external:

- PupToken.approve(address,uint256) (PupToken.sol#782-785)
transferFrom(address,address,uint256) should be declared external:

- PupToken.transferFrom(address,address,uint256)
(PupToken.sol#787-791) increaseAllowance(address,uint256) should be
declared external:

- PupToken.increaseAllowance(address,uint256)
(PupToken.sol#793-796) decreaseAllowance(address,uint256) should be
declared external:

- PupToken.decreaseAllowance(address,uint256)

(PupToken.sol#798-801) isExcludedFromReward(address) should be
declared external:

- PupToken.isExcludedFromReward(address) (PupToken.sol#803-805)
totalFees() should be declared external:

- PupToken.totalFees() (PupToken.sol#807-809)
deliver(uint256) should be declared external:

- PupToken.deliver(uint256) (PupToken.sol#811-818)
reflectionFromToken(uint256,bool) should be declared external:

- PupToken.reflectionFromToken(uint256,bool)
(PupToken.sol#820-829) excludeFromReward(address) should be
declared external:

- PupToken.excludeFromReward(address) (PupToken.sol#837-845)
excludeFromFee(address) should be declared external:

- PupToken.excludeFromFee(address) (PupToken.sol#870-872)
includeInFee(address) should be declared external:

- PupToken.includeInFee(address) (PupToken.sol#874-876)
setSwapAndLiquifyEnabled(bool) should be declared external:

- PupToken.setSwapAndLiquifyEnabled(bool)
(PupToken.sol#892-895) isExcludedFromFee(address) should be
declared external:

- PupToken.isExcludedFromFee(address) (PupToken.sol#978-980)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#public-function-that
could-be-declared-external
INFO:Slither:PupToken.sol analyzed (10 contracts with 72 detectors), 106 result(s)
found INFO:Slither:Use https://crytic.io/ to get access to additional detectors and
Github integration xcv@xcv-ThinkPad-T410:~/tempSlither$

